资源类型

期刊论文 169

会议视频 4

年份

2024 1

2023 15

2022 15

2021 17

2020 14

2019 8

2018 6

2017 6

2016 5

2015 4

2014 5

2013 8

2012 8

2011 8

2010 6

2009 14

2008 11

2007 10

2006 1

2005 2

展开 ︾

关键词

医学 2

抗干扰 2

超超临界 2

COVID-19 1

DNA 1

DX桩 1

SARS-CoV-2 1

TNT装药爆炸 1

三塔两跨悬索桥 1

两亲高分子 1

中药 1

中间塔鞍座 1

临床试验 1

主动防堵 1

二氧化碳 1

亲水 1

优化分析 1

伪码 1

位移与滑动形式 1

展开 ︾

检索范围:

排序: 展示方式:

Micronization of curcumin with biodegradable polymer by supercritical anti-solvent using micro swirl

Kimthet Chhouk, Wahyudiono, Hideki Kanda, Shin-Ichro Kawasaki, Motonobu Goto

《化学科学与工程前沿(英文)》 2018年 第12卷 第1期   页码 184-193 doi: 10.1007/s11705-017-1678-3

摘要: Curcumin is a hydrophobic polyphenol compound exhibiting a wide range of biological activities such as anti-inflammatory, anti-bacterial, anti-fungal, anti-carcinogenic, anti-human immunodeficiency virus, and anti-microbial activity. In this work, a swirl mixer was employed to produce the micronized curcumin with polyvinylpyrrolidone (PVP) by the supercritical anti-solvent process to improve the bioavailability of curcumin. The effects of operating parameters such as curcumin/PVP ratio, feed concentration, temperature, pressure, and CO flow rate were investigated. The characterization and solubility of particles were determined by using scanning electron microscopy, Fourier Transform Infrared spectroscopy, and ultra-violet-visible spectroscopy. The result shows that the optimal condition for the production of curcumin/PVP particles is at curcumin/PVP ratio of 1:30, feed concentration of 5 mg·mL , temperature of 40 °C, pressure of 15 MPa, and CO flow rate of 15 mL·min . Moreover, the dissolution of curcumin/PVP particles is faster than that of raw curcumin.

关键词: micronization     curcumin     polyvinylpyrrolidone     supercritical anti-solvent     swirl mixer    

Purification of artemisinin from quercetin by anti-solvent crystallization

Chandrakant R. MALWADE, Haiyan QU, Ben-Guang RONG, Lars P. CHRISTENSEN

《化学科学与工程前沿(英文)》 2013年 第7卷 第1期   页码 72-78 doi: 10.1007/s11705-013-1305-x

摘要: In the present work, anti-solvent crystallization of artemisinin from four different organic solvents (methanol, ethanol, acetonitrile, and acetone) was studied. Water was used as anti-solvent. The effect of an impurity (quercetin) on the performance of anti-solvent crystallization of artemisinin was investigated. The fundamental process data such as solubility of artemisinin in pure organic solvents and their binary mixtures with varying composition water were measured at room temperature. The solubility of quercetin was measured only in pure organic solvents at room temperature. Anti-solvent crystallization experiments were designed based on the fundamental process data determined. Firstly, the anti-solvent crystallization of artemisinin without impurity was performed from all four organic solvents and then the experiments were repeated with addition of an impurity (quercetin) while keeping all other process parameters constant. Two different concentrations of impurity, i.e., 10% and 50% of its solubility, in the respective organic solvents at room temperature were used. The effect of impurity on performance of anti-solvent crystallization was evaluated by comparing the yield and purity of the artemisinin obtained with those in the absence of impurity. Results of the present work demonstrated that the presence of quercetin in the solution does not affect the final yield of artemisinin from the solution of each of four organic solvents used. However, the purity of artemisinin crystals were reduced when quercetin concentration was 50% of its solubility in all solvents studied.

关键词: anti-solvent crystallization     artemisinin     quercetin     solubility     Artemisia annua    

Technologies for extracting lipids from oleaginous microorganisms for biodiesel production

Cunwen WANG, Lu CHEN, Bajpai RAKESH, Yuanhang QIN, Renliang LV

《能源前沿(英文)》 2012年 第6卷 第3期   页码 266-274 doi: 10.1007/s11708-012-0193-y

摘要: Recently, biodiesel has received much more attention. Soybean oil, rapeseed oil, palm oil and corn oil are primary feedstock for biodiesel production. However, biodiesel production from these traditional oil-rich crops is limited by land availability, climate, and environmental and social issues regarding the use of feed and food crops for fuel. Oleaginous microorganisms, including microalgae, bacteria, yeast and fungi can be cultivated with high lipid contents and used as promising feedstock for biodiesel production. However, the high cost of biodiesel production using oil microorganisms has been the biggest obstacle for its industrialization. The process of biodiesel production from microorganisms involves many steps, of which the lipids extraction is the most important and costly. Therefore, searching for an effective and economical extraction system is critical. Various approaches of lipids extraction are discussed in this review, including traditional extraction procedures such as solvent extraction, pressing and solvent integrated extraction, as well as some new procedures.

关键词: oleaginous microorganisms     biodiesel     solvent extraction     ultrasound-assisted extraction     microwave-assisted extraction     supercritical fluid extraction (SFE)    

Calculation and analysis of sub/supercritical methanol preheating tube for continuous production of biodieselvia supercritical methanol transesterification

Wen CHEN, Weiyong YING, Cunwen WANG, Weiguo WANG, Yuanxin WU, Junfeng ZHANG,

《能源前沿(英文)》 2009年 第3卷 第4期   页码 423-431 doi: 10.1007/s11708-009-0075-0

摘要: Biodiesel is an important renewable energy. Supercritical methanol transesterification for biodiesel has recently been concerned because of its obvious advantages. The tubular reactor is an ideal reactor for continuous preparation of biodiesel via supercritical methanol transesterification. A methanol preheating tube is necessary for the tubular reaction system because the reaction temperature for supercritical methanol transesterification is usually 520―600K. Therefore, in the range of 298―600K, changes of the density, isobaric capacity, viscosity and thermal conductivity of sub/supercritical methanol with temperature are first discussed. Then on the basis of these thermophysical properties, an integration method is adopted for the design of sub/supercritical methanol preheating tube when methanol is preheated from 298K to 600K at 16MPa and the influencing factors on the length of the preheating tube are also studied. The computational results show that the Reynolds number and the local convection heat-transfer coefficient of sub/supercritical methanol flowing in ф6mm×1.5mm preheating tube change drastically with temperature. For the local overall heat transfer coefficient and the average overall heat transfer coefficient , temperature also has an important influence on them when the inlet velocity of methanol is lower than 0.5m/s. But when the inlet velocity of methanol is higher than 0.5m/s, and almost keep invariable with temperature. Additionally, both the outlet temperature and the inlet velocity of methanol are the key affecting factors for the length of the preheating tube, especially when the outlet temperature is over the critical temperature of methanol. At the same time, the increase of tin bath’s temperature can shorten the required length of the preheating tube. At the inlet flow rate of 0.5m/s, the required length of the preheating tube is 2.0m when methanol is preheated from 298K to 590K at 16MPa with keeping the tin bath’s temperature 620K, which is in good agreement with the experimental results.

关键词: sub/supercritical methanol     preheating tube     integration method     biodiesel    

Regulation of radicals by hydrogen-donor solvent in direct coal liquefaction

《化学科学与工程前沿(英文)》 2022年 第16卷 第12期   页码 1689-1699 doi: 10.1007/s11705-022-2186-7

摘要: Radicals are important intermediates in direct coal liquefaction. Certain radicals can cause the cleavage of chemical bonds. At high temperatures, radical fragments can be produced by the splitting of large organic molecules, which can break strong chemical bonds through the induction pyrolysis of radicals. The reaction between the formation and annihilation of coal radical fragments and the effect of hydrogen-donor solvents on the radical fragments are discussed in lignite hydrogenolysis. Using the hydroxyl and ether bonds as indicators, the effects of different radicals on the cleavage of chemical bond were investigated employing density functional theory calculations and lignite hydrogenolysis experiments. Results showed that the adjustment of the coal radical fragments could be made by the addition of hydrogen-donor solvents. Results showed that the transition from coal radical fragment to H radical leads to the variation of product distribution. The synergistic mechanism of hydrogen supply and hydrogenolysis of hydrogen-donor solvent was proposed.

关键词: direct coal liquefaction     hydrogen-donor solvent     induced pyrolysis     radical mechanism     density functional theory calculations    

A review on catalytic & non-catalytic bio-oil upgrading in supercritical fluids

Sainab Omar, Yang Yang, Jiawei Wang

《化学科学与工程前沿(英文)》 2021年 第15卷 第1期   页码 4-17 doi: 10.1007/s11705-020-1933-x

摘要: This review article summarizes the key published research on the topic of bio-oil upgrading using catalytic and non-catalytic supercritical fluid (SCF) conditions. The precious metal catalysts Pd, Ru and Pt on various supports are frequently chosen for catalytic bio-oil upgrading in SCFs. This is reportedly due to their favourable catalytic activity during the process including hydrotreating, hydrocracking, and esterification, which leads to improvements in liquid yield, heating value, and pH of the upgraded bio-oil. Due to the costs associated with precious metal catalysts, some researchers have opted for non-precious metal catalysts such as acidic HZSM-5 which can promote esterification in supercritical ethanol. On the other hand, SCFs have been effectively used to upgrade crude bio-oil without a catalyst. Supercritical methanol, ethanol, and water are most commonly used and demonstrate catalyst like activities such as facilitating esterification reactions and reducing solid yield by alcoholysis and hydrolysis, respectively.

关键词: bio-oil     upgrading     supercritical     review    

Polydimethylsiloxane assisted supercritical CO

Weixia Wang, Shuai Zhou, Zhong Xin, Yaoqi Shi, Shicheng Zhao

《化学科学与工程前沿(英文)》 2016年 第10卷 第3期   页码 396-404 doi: 10.1007/s11705-016-1577-z

摘要: Foamable high melt strength polypropylene (HMSPP) was prepared by grafting styrene (St) onto polypropylene (PP) and simultaneously introducing polydimethylsiloxane (PDMS) through?a?one-step?melt extrusion process. The effect of PDMS viscosity on the foaming behavior of HMSPP was systematically investigated using supercritical CO as the foaming agent. The results show that the addition of PDMS has little effect on the grafting reaction of St and HMSPP exhibits enhanced elastic response and obvious strain hardening effect. Though the CO solubility of HMSPP with PDMS (PDMS-HMSPP) is lower than that of HMSPP without PDMS, especially for PDMS with low viscosity, the PDMS-HMSPP foams exhibit narrow cell size distribution and high cell density. The fracture morphology of PDMS-HMSPP shows that PDMS with low viscosity disperses more easily and uniformly in HMSPP matrix, leading to form small domains during the extrusion process. These small domains act as bubble nucleation sites and thus may be responsible for the improved foaming performance of HMSPP.

关键词: high melt strength polypropylene (HMSPP)     polydimethylsiloxane (PDMS)     supercritical CO2     foaming behavior    

Study of an artificial boundary condition based on the damping-solvent extraction method

Qiang XU, Jianyun CHEN, Jing LI, Mingming WANG

《结构与土木工程前沿(英文)》 2012年 第6卷 第3期   页码 281-287 doi: 10.1007/s11709-012-0167-5

摘要: A new artificial boundary condition for time domain analysis of a structure-unlimited-foundation system was proposed. The boundary condition was based on the damping-solvent extraction method. The principle of the damping-solvent extraction method was described. An artificial boundary condition was then established by setting two spring-damper systems and one artificial damping limited region. A test example was developed to verify that the proposed boundary condition and model had high precision. Compared with the damping-solvent extraction method, this boundary condition is easier to be applied to finite element method (FEM)-based numerical calculations.

关键词: damping-solvent extraction method     structure-unlimited-foundation system     spring-damper system     artificial damping limited region     finite element method    

Corrosion mechanisms of candidate structural materials for supercritical water-cooled reactor

Lefu ZHANG, Fawen ZHU, Rui TANG

《能源前沿(英文)》 2009年 第3卷 第2期   页码 233-240 doi: 10.1007/s11708-009-0024-y

摘要: Nickel-based alloys, austenitic stainless steel, ferritic/martensitic heat-resistant steels, and oxide dispersion strengthened steel are presently considered to be the candidate structural or fuel-cladding materials for supercritical water-cooled reactor (SCWR), one of the promising generation IV reactor for large-scale electric power production. However, corrosion and stress corrosion cracking of these candidate alloys still remain to be a major problem in the selection of nuclear fuel cladding and other structural materials, such as water rod. Survey of literature and experimental results reveal that the general corrosion mechanism of those candidate materials exhibits quite complicated mechanism in high-temperature and high-pressure supercritical water. Formation of a stable protective oxide film is the key to the best corrosion-resistant alloys. This paper focuses on the mechanism of corrosion oxide film breakdown for SCWR candidate materials.

关键词: supercritical water-cooled reactor     general corrosion     oxide film     corrosion mechanism    

Deep eutectic solvent inclusions for high- composite dielectric elastomers

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 996-1002 doi: 10.1007/s11705-022-2138-2

摘要: Recent advances in novel electroactive devices have placed new requirements on material development. High-performance dielectric elastomers with good mechanical stretchability and high dielectric constant are under high demand. However, the current strategy for fabricating these materials suffers from high cost or low thermal stability, which greatly hinders large-scale industrial production. Herein, we have successfully developed a novel strategy for improving the dielectric constant of polymeric elastomers via deep eutectic solvent inclusion by taking advantage of the low cost, convenient and environmentally benign synthesis process and high ionic conductivity from deep eutectic solvents. The as-prepared composite elastomers showed good stretchability and a greatly enhanced dielectric constant with a negligible increase in dielectric dissipation. Moreover, we have proven the universality of our strategy by using different types of deep eutectic solvents. It is believed that low-cost, easy-synthesis and environmentally friendly deep eutectic solvents including composite elastomers are highly suitable for large-scale industrial production and can greatly broaden the application fields of dielectric elastomers.

关键词: composite materials     deep eutectic solvent     dielectric elastomer     high dielectric constant    

Development of a supercritical and an ultra-supercritical circulating fluidized bed boiler

Junfu LYU, Hairui YANG, Wen LING, Li NIE, Guangxi YUE, Ruixin LI, Ying CHEN, Shilong WANG

《能源前沿(英文)》 2019年 第13卷 第1期   页码 114-119 doi: 10.1007/s11708-017-0512-4

摘要: The supercritical circulating fluidized bed (CFB) boiler, which combines the advantages of CFB combustion with low cost emission control and supercritical steam cycle with high efficiency of coal energy, is believed to be the future of CFB combustion technology. It is also of greatest importance for low rank coal utilization in China. Different from the supercritical pulverized coal boiler that has been developed more than 50 years, the supercritical CFB boiler is still a new one which requires further investigation. Without any precedentor engineering reference, Chinese researchers have conducted fundamental research, development, design of the supercritical CFB boilers independently. The design theory and key technology for supercritical CFB boiler were proposed. Key components and novel structures were invented. The first 600 MWe supercritical CFB boiler and its auxiliaries were successfully developed and demonstrated in Baima Power Plant, Shenhua Group as well as the simulator, control technology, installation technology, commissioning technology, system integration and operation technology. Compared with the 460 MWe supercritical CFB in Poland, developed in the same period and the only other supercritical one of commercial running in the word beside Baima, the 600 MWe one in Baima has a better performance. Besides, supercritical CFB boilers of 350 MWe have been developed and widely commercialized in China. In this paper, the updated progress of 660 MWe ultra-supercritical CFB boilers under development is introduced.

关键词: supercritical     circulating fluidized bed boiler     development     demonstration    

A new procedure combining GC-MS with accelerated solvent extraction for the analysis of phthalic acid

Tingting MA, Ying TENG, Peter CHRISTIE, Yongming LUO, Yongshan CHEN, Mao YE, Yujuan HUANG

《环境科学与工程前沿(英文)》 2013年 第7卷 第1期   页码 31-42 doi: 10.1007/s11783-012-0463-2

摘要: An optimized procedure based on gas chromatography-mass spectrometry (GC-MS) combined with accelerated solvent extraction (ASE) is developed for the analysis of six phthalic acid esters (PAEs), which are priority soil pollutants nominated by United States Environmental Protection Agency (USEPA). Quantification of PAEs in soil employs ultrasonic extraction (UE) (USEPA 3550) and ASE (USEPA 3545), followed by clean up procedures involving three different chromatography columns and two combined elution methods. GC-MS conditions under selected ion monitoring (SIM) mode are described and quality assurance and quality control (QA/QC) criteria with high accuracy and sensitivity for target analytes were achieved. Method reliability is assured with the use of an isotopically labeled PAE, di- -butyl phthalate-d4 (DnBP-D4), as a surrogate, and benzyl benzoate (BB) as an internal standard, and with the analysis of certified reference materials (CRM). QA/QC for the developed procedure was tested in four PAE-spiked soils and one PAE-contaminated soil. The four spiked soils were originated from typical Chinese agricultural fields and the contaminated soil was obtained from an electronic waste dismantling area. Instrument detection limits (IDLs) for the six PAEs ranged 0.10–0.31 μg·L and method detection limits (MDLs) of the four spiked soils varied from a range of 20–70 μg·kg to a range of 90– 290 μg·kg . Linearity of response between 20 μg·L and 2 mg·L was also established and the correlation coefficients ( ) were all>0.998. Spiked soil matrix showed relative recovery rates between 75 and 120% for the six target compounds and about 93% for the surrogate substance. The developed procedure is anticipated to be highly applicable for field surveys of soil PAE pollution in China.

关键词: phthalic acid esters     quality assurance and quality control     soil type     accelerated solvent extraction     certified reference materials    

Thermo-economic analysis of a direct supercritical CO electric power generation system using geothermal

《能源前沿(英文)》 2022年 第16卷 第2期   页码 246-262 doi: 10.1007/s11708-021-0749-9

摘要: A comprehensive thermo-economic model combining a geothermal heat mining system and a direct supercritical CO2 turbine expansion electric power generation system was proposed in this paper. Assisted by this integrated model, thermo-economic and optimization analyses for the key design parameters of the whole system including the geothermal well pattern and operational conditions were performed to obtain a minimal levelized cost of electricity (LCOE). Specifically, in geothermal heat extraction simulation, an integrated wellbore-reservoir system model (T2Well/ECO2N) was used to generate a database for creating a fast, predictive, and compatible geothermal heat mining model by employing a response surface methodology. A parametric study was conducted to demonstrate the impact of turbine discharge pressure, injection and production well distance, CO2 injection flowrate, CO2 injection temperature, and monitored production well bottom pressure on LCOE, system thermal efficiency, and capital cost. It was found that for a 100 MWe power plant, a minimal LCOE of $0.177/kWh was achieved for a 20-year steady operation without considering CO2 sequestration credit. In addition, when CO2 sequestration credit is $1.00/t, an LCOE breakeven point compared to a conventional geothermal power plant is achieved and a breakpoint for generating electric power generation at no cost was achieved for a sequestration credit of $2.05/t.

关键词: geothermal heat mining     supercritical CO2     power generation     thermo-economic analysis     optimization    

Production of renewable fuels by blending bio-oil with alcohols and upgrading under supercritical conditions

Sainab Omar, Suzanne Alsamaq, Yang Yang, Jiawei Wang

《化学科学与工程前沿(英文)》 2019年 第13卷 第4期   页码 702-717 doi: 10.1007/s11705-019-1861-9

摘要: The work studied a non-catalytic upgrading of fast pyrolysis bio-oil by blending under supercritical conditions using methanol, ethanol and isopropanol as solvent and hydrogen donor. Characterisation of the bio-oil and the upgraded bio-oils was carried out including moisture content, elemental content, pH, heating value, gas chromatography-mass spectrometry (GCMS), Fourier transform infrared radiation, C nuclear magnetic resonance spectroscopy, and thermogravimetric analysis to evaluate the effects of blending and supercritical reactions. The GCMS analysis indicated that the supercritical methanol reaction removed the acids in the bio-oil consequently the pH increased from 2.39 in the crude bio-oil to 4.04 after the supercritical methanol reaction. The ester contents increased by 87.49% after the supercritical methanol reaction indicating ester formation could be the major deacidification mechanism for reducing the acidity of the bio-oil and improving its pH value. Simply blending crude bio-oil with isopropanol was effective in increasing the C and H content, reducing the O content and increasing the heating value to 27.55 from 17.51 MJ·kg in the crude bio-oil. After the supercritical isopropanol reaction, the heating value of the liquid product slightly further increased to 28.85 MJ·kg .

关键词: bio-oil     blending     supercritical     upgrading     characterisation    

超临界化——优化我国火电结构应从这里起步

宋之平

《中国工程科学》 2002年 第4卷 第2期   页码 22-27

摘要:

文章认为优化火电结构应放在超临界化上,使超临界机组和超超临界机组在我国火电中占据举足轻重的比例。而且这些机组的主要性能指标以及环保性能等应不逊于同类机组的国际水平。论述了超临界技术在优化火电结构的特殊作用,指出超临界化已被证明是改造和优化火电结构的一种成功的道路,阐明了我国实施这一发展道路的必要性和可能性。

关键词: 火电结构     超临界     超超临界     可持续发展战略    

标题 作者 时间 类型 操作

Micronization of curcumin with biodegradable polymer by supercritical anti-solvent using micro swirl

Kimthet Chhouk, Wahyudiono, Hideki Kanda, Shin-Ichro Kawasaki, Motonobu Goto

期刊论文

Purification of artemisinin from quercetin by anti-solvent crystallization

Chandrakant R. MALWADE, Haiyan QU, Ben-Guang RONG, Lars P. CHRISTENSEN

期刊论文

Technologies for extracting lipids from oleaginous microorganisms for biodiesel production

Cunwen WANG, Lu CHEN, Bajpai RAKESH, Yuanhang QIN, Renliang LV

期刊论文

Calculation and analysis of sub/supercritical methanol preheating tube for continuous production of biodieselvia supercritical methanol transesterification

Wen CHEN, Weiyong YING, Cunwen WANG, Weiguo WANG, Yuanxin WU, Junfeng ZHANG,

期刊论文

Regulation of radicals by hydrogen-donor solvent in direct coal liquefaction

期刊论文

A review on catalytic & non-catalytic bio-oil upgrading in supercritical fluids

Sainab Omar, Yang Yang, Jiawei Wang

期刊论文

Polydimethylsiloxane assisted supercritical CO

Weixia Wang, Shuai Zhou, Zhong Xin, Yaoqi Shi, Shicheng Zhao

期刊论文

Study of an artificial boundary condition based on the damping-solvent extraction method

Qiang XU, Jianyun CHEN, Jing LI, Mingming WANG

期刊论文

Corrosion mechanisms of candidate structural materials for supercritical water-cooled reactor

Lefu ZHANG, Fawen ZHU, Rui TANG

期刊论文

Deep eutectic solvent inclusions for high- composite dielectric elastomers

期刊论文

Development of a supercritical and an ultra-supercritical circulating fluidized bed boiler

Junfu LYU, Hairui YANG, Wen LING, Li NIE, Guangxi YUE, Ruixin LI, Ying CHEN, Shilong WANG

期刊论文

A new procedure combining GC-MS with accelerated solvent extraction for the analysis of phthalic acid

Tingting MA, Ying TENG, Peter CHRISTIE, Yongming LUO, Yongshan CHEN, Mao YE, Yujuan HUANG

期刊论文

Thermo-economic analysis of a direct supercritical CO electric power generation system using geothermal

期刊论文

Production of renewable fuels by blending bio-oil with alcohols and upgrading under supercritical conditions

Sainab Omar, Suzanne Alsamaq, Yang Yang, Jiawei Wang

期刊论文

超临界化——优化我国火电结构应从这里起步

宋之平

期刊论文